多光子显微镜中的焦点深度扩展方法(二)
为了解决使用单个环扩展焦深光通量不够的问题, BINGYING CHEN等人利用超短脉冲相干长度短的特性,采用多环结构的分束掩模,超快激光脉冲经过时会被分束掩模分成不同的环形子束,每个子束都有时间延迟,也就是每个子束在不同的时间点在物镜的焦平面上形成贝塞尔焦点。如果每个环引入的时间延迟大大超过了激光脉冲的持续时间,则子束将互不相干,产生的EDF焦点是所有单个贝塞尔焦点的非相干叠加,如图5所示。
图5 a:分束掩模结构图;b:分束掩模扩展焦点深度的原理示意图;c:模拟的不同环形光非相干叠加的结果(1-5表示由内到外,EDF:深度扩展后的焦点)
基于实验设计的掩模参数,该组进行了数值模拟,结果如图6,最大NA为0.67时计算得到的横向和轴向分辨率分别为550nm和15.98μm,比常规聚焦方式的轴向尺寸大4.96倍,而横向半高全宽仅比常规聚焦方式大7%。
图6 点扩散函数的数值模拟结果
该组搭建的实验装置如图7所示,由钛宝石激光器输出的中心波长900nm,脉冲宽度140fs的超短脉冲通过普克尔盒进行功率调节,经过扩束器后进入掩模,掩模每层的厚度约为400μm,对脉冲提供的时间延迟为720fs,满足非相干叠加的要求。之后光束经过一系列透镜和两个振镜被耦合至物镜光瞳平面,实现扩展焦深成像。
图7 实验装置图。1:普克尔盒,光隔离器;2,4,7,8,18:透镜;3:圆孔;5:虹膜;6:分束掩模;9,12:振镜;10,11:普罗素目镜;13:扫描透镜;14:管状透镜;15:二向色镜;16:物镜;17:滤波器;19:光电倍增管
对输出光束的点扩散函数测量结果如图8所示。对比有掩模和无掩模的点扩散函数发现,有掩模时的轴向半高全宽是无掩模情况下的5.8倍,横向半高全宽增加15%。降低无掩模条件的NA使得轴向半高全宽和有掩模时一致,横向半高全宽增加约1倍。上述结果说明该掩模能在略微牺牲横向分辨率的条件下显著提升焦点深度。为了验证分束掩模在神经科学成像中的应用潜力,该组还展示了固定小鼠脑样本中GFP标记的神经元的荧光成像。
图8 点扩散函数测量结果。
总之,对于稀疏群体结构,采用上述扩展焦深成像的方法,可以在保持横向分辨率和光通量的同时扩展焦深,进而大大提高成像速度,这在活体神经元信号探测方面十分有潜力。
参考文献:
[1] Rongwen L , Masashi T , Minoru K , et al. 50 Hz volumetric functional imaging with continuously adjustable depth of focus[J]. Biomedical Optics Express, 2018, 9(4):1964-.[2] Chen B , Chakraborty T , Daetwyler S , et al. Extended depth of focus multiphoton microscopy via incoherent pulse splitting[J]. Biomedical Optics Express, 2020, 11(7).
相关文章阅读
相关产品