多光子显微镜成像技术:多光子显微镜用于体内神经元...
多光子显微镜成像技术:多光子显微镜用于体内神经元成像的多种技术
与传统的单光子宽视野荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整活体大脑深处神经的了解与认识。2019年,Jerome Lecoq等人从大脑深处的神经元成像、大量神经元成像、高速神经元成像这三个方面论述了相关的MPM技术[1]。
想要将神经元活动与复杂行为联系起来,通常需要对大脑皮质深层的神经元进行成像,这就要求MPM具有深层成像的能力。激发和发射光会被生物组织高度散射和吸收是限制MPM成像深度的主要因素,虽然可以通过增加激光强度来解决散射问题,但这会带来其他问题,例如烧坏样品、离焦和近表面荧光激发。增加MPM成像深度最好的方法是用更长的波长作为激发光。
另外,对于双光子(2P)成像而言,离焦和近表面荧光激发是两个最大的深度限制因素,而对于三光子(3P)成像这两个问题大大减小,但是三光子成像由于荧光团的吸收截面比2P要小得多,所以需要更高数量级的脉冲能量才能获得与2P激发的相同强度的荧光信号。功能性3P显微镜比结构性3P显微镜的要求更高,它需要更快速的扫描,以便及时采样神经元活动;需要更高的脉冲能量,以便在每个像素停留时间内收集足够的信号。
复杂的行为通常涉及到大型的大脑神经网络,该网络既具有局部的连接又具有远程的连接。要想将神经元活动与行为联系起来,需要同时监控非常庞大且分布广泛的神经元的活动,大脑中的神经网络会在几十毫秒内处理传入的刺激,要想了解这种快速的神经元动力学,就需要MPM具备对神经元进行快速成像的能力。快速MPM方法可分为单束扫描技术和多束扫描技术。
单束扫描技术可以高速遍历大视场(FOV)的神经组织
使用MPM对神经元进行成像时,通过随机访问扫描—即激光束在整个视场上的任意选定点上进行快速扫描—可以只扫描感兴趣的神经元,这样不仅避免扫描到任何未标记的神经纤维,还可以优化激光束的扫描时间。随机访问扫描(图1)可以通过声光偏转器(AOD)来实现,其原理是将具有一个射频信号的压电传感器粘在合适的晶体上,所产生的声波引起周期性的折射率光栅,激光束通过光栅时发生衍射。通过射频电信号调控声波的强度和频率从而可以改变衍射光的强度和方向,这样使用1个AOD就可以实现一维横向的任意点扫描,利用1对AOD,结合其他轴向扫描技术可实现3D的随机访问扫描。但是该技术对样本的运动很敏感,易出现运动伪影。目前,快速光栅扫描即在FOV中进行逐行扫描,由于利用算法可以轻松解决运动伪影而被广泛的使用。
图1 基于AOD的体内新皮层L2 / 3神经元的双光子成像[2]
快速光栅扫描有多种实现方式,使用振镜进行快速2D扫描,将振镜和可调电动透镜结合在一起进行快速3D扫描,但可调电动透镜由于机械惯性的限制在轴向无法快速进行焦点切换,影响成像速度,现可使用空间光调制器(SLM)代替。
远程聚焦也是一种实现3D成像的手段,如图2所示。在LSU模块中,扫描振镜进行横向扫描, ASU模块包括物镜L1和反射镜M,通过调控M的位置实现轴向扫描。该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速的轴向扫描。想要获得更多神经元成像,可以通过调整显微镜的物镜设计来扩大FOV,但是具有大NA和大FOV的物镜通常重量较大,无法快速移动以进行快速轴向扫描,因此大型FOV系统依赖于远程聚焦、SLM和可调电动透镜。
图2 远程聚焦双光子成像系统的示意图[3]多束扫描技术可以同时对神经元组织的不同位置进行成像
该技术如图3所示。对两个远距离(相距大于1-2 mm)的成像部位,通常使用两条独立的路径进行成像(图3C,D);对于相邻区域,通常使用单个物镜的多光束进行成像(图3E,F)。多光束扫描技术必须特别注意激发光束之间的串扰问题,这个问题可以通过事后光源分离方法或时空复用方法来解决。事后光源分离方法指的是用算法来分离光束消除串扰;时空复用方法指的是同时使用多个激发光束,每个光束的脉冲在时间上延迟,这样就可以暂时分离被不同光束激发的单个荧光信号。引入越多路光束就可以对越多的神经元进行成像,但是多路光束会导致荧光衰减时间的重叠增加,从而限制了区分信号源的能力;并且多路复用对电子设备的工作速率有很高的要求;大量的光束也需要更高的激光功率来维持近似单光束的信噪比,这会容易导致组织损伤。
图3 大面积成像技术
近年来,不同的MPM技术的发展拓宽了我们对神经组织的成像范围,使得我们可以以更快的速度对大脑深处更多的神经元进行成像,这大大推动了神经科学的研究,使我们能够对脑功能有更清晰的理解。
参考文献
[1] Lecoq J, Orlova N, Grewe BF. Wide. Fast. Deep: Recent Advances in Multiphoton Microscopy of In Vivo Neuronal Activity[J]. The Journal of Neuroscience. 2019, 39(46): 9042–9052.
[2] Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision[J]. Nat Methods. 2010, 7:399-405.
[3] Botcherby EJ, Smith CW, Kohl MM, De?barre D, Booth MJ, Juskaitis R, Paulsen O, Wilson T. Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates[J]. Proc Natl Acad Sci USA. 2012, 109: 2919-2924.
相关文章阅读
相关产品